Imperial College

 London

 Design Engineering Year 1

 DE1.3 - Electronics 1

 TOPIC 1 - Introducing the Module

 Prof Peter YK Cheung

 Dyson School of Design Engineering

 Imperial College London

 URL: www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/

 E-mail: p.cheung@imperial.ac.uk

Welcome to this first course you will take on electronic engineering. This is my fifth time teaching this module. I had a great experience teaching this class for the past few years, and it was planned that I should pass this onto Dr David Boyle. However, due to Covid-19 and remote teaching, I am continuing to lead this module for this year.

This course presents a personal challenge even before the current crisis: how to select and teach from a vast amount of materials we normally teach to first year EE students, and cover all that with you in a quarter of the available time? Even more challenging is: how to ensure that you retain what you learn in electronics for years to come, while you only encounter this topic rarely during the entire degree programme?

All my teaching materials including lecture slides with notes, laboratory work and tutorial problem sheets, can be found on the course webpage shown here. Furthermore, all lectures will be recorded with Panopto.

	Course Overview					
	◆ By	the end of the course, you should have learned and under Electrical signals in terms of voltages and currents Measurements of electrical signals and their accuracies Basic electrical circuit components: resistors , capacitors and inductors	erstood:			
	•	Prediction of voltages and currents in electrical circuits				
	•	Electrical energy and power				
	•	Amplification of electrical signals				
	•	Analogue vs digital signals				
	•	Basic digital electronic building blocks including logic gates an microprocessors	d			
	•	Behaviour of circuits in steady-state or in transient				
	•	How to sense the environment and produce electrical signals				
	•	How to drive stuff externally from electronics				
	•	How to generate or store energy				
	•	How to add flexibility and intelligence to electronic circuits				
	•	How to communicate				
F	PYKC 1 Ma	y 2020 DE1.3 - Electronics	Topic 1 Slide 2			

Being an electronic engineering professor, my opinion is biased. However, I would argue that electronics is now ubiquitous in the modern world. There are now more electronic parts in a car than mechanical ones.

Shown here is a partial list of what you can expect to learn from this course. Even more importantly, before I started prepare for the contents of this course, I wrote a document stating the principle on which I will design this course. In it, I stated five basic principles:

- 1. Less is more taking material out will result in students learning more.
- 2. Concept with rigour focus on conceptual understanding instead of details, but at the same time not loosing rigour. Focus on fundamentals.
- **3.** Top-down, not bottom-up where possible go from system level view to component view where possible.
- 4. Confidence not ignorance bring about student's confidence on electronics. Know what you know, but even more important, know what you don't know!
- 5. Formal teaching vs problem based learning blending together practical laboratory and project work with the course materials taught formally in lectures.

A copy of this document is put on the course webpage.

Remote teaching is new to everyone. However, I have a plan as shown here. I will adapt this plan as we progress throughout the term.

Week	Торіс	Home Lab	Home work
Starting			
27 April	1 – Introducing the module	None	Read this
			document
	2 – Current, voltage, power & Ohm's Law	Lab 0: Watch video on	Problem Sheet 1
4 May	3 – Resistors and resistor circuits	multimeter &	
	4 – How to measure V and I?	oscilloscope	
	5 – Nodal analysis & Kirchhoff 's Laws		
	6 – Introducing the Home Lab Kit	Lab 1: Measurements using	Problem Sheet 2
11 May	7 – Signals: DC, AC, analogue, digital,	the multimeter & Scope	& Quiz 1
	PWM, exponential rise & fall		
	8 – Linearity & principle of superposition		
	9 – Thevenin's equivalent circuits		
	10 – Lab 1 explained	Lab 2: Circuits based on	Problem Sheet 3
18 May	11 – Capacitors and RC circuits	resistors & capacitors	& Quiz 2
	12 – Frequency response & transient		
	behaviour in circuits		
	13 – Diodes & transistors, idea of		
	amplification		
	14 – Lab 2 explained	Lab 3: Operational Amplifiers	Problem Sheet 4
25 May	15 – Operational Amplifier circuits		& Quiz 3
	16 – Number systems, digital signals & logic		
	gates		
	17 – Simplified view of a computer system		
1 June	18 – Lab 3 explained	Lab 4: Programming ESP32	Problem Sheet 5
	19 – ESP32 & Micropython	using Micropython	& Quiz 4
	20 – Inductors, transformer and		
	electromagnets		
	21 – Drive: PWM, H-bridge, Servo motors,		
	Neopixels		
8 June	22 – Lab 4 explained	Lab 5: Challenges with	Problem Sheet 6
	23 – Sense: transducers and sensors	Stretched Goals – part 1	& Quiz 5
	24 – Link: UART, I2C, SPI, Bluetooth, Wifi		
	25 – Source: batteries, solar panel, dynamo		
15 June	26 – Revision lecture 1	Lab 6: Challenges with	
	27 – Revision lecture 2	Stretched Goals – part 2	
22 June	Written Examination (date TBD)	Practical Remote Assessment	
		(date TBD)	

I will be providing notes throughout this course. So strictly speaking, you could get away without using any textbooks. However, I recommend only one textbook – Practical electronics for inventors. This book is particularly suitable for Design Engineers because it has a good balance between theory and practice, it is relatively low cost in spite of size (>1000 pages) and it covers everything you need in electronics at sufficient depth.

This module will be based on talks and practical laboratory experiments. This is achieved through a Home Lab Kit that I have prepared for you. These will be sent to you via courier in next week. Depending on where you live, I expect that you will receive your Kit by the end of next week or the following week.

Please make sure that you complete your address survey asap, and not later than noon on 2 May 2020.